相思资源网 Design By www.200059.com
先粘贴一段official guide:nn.conv1d官方
我一开始被in_channels、out_channels卡住了很久,结果发现就和conv2d是一毛一样的。话不多说,先粘代码(菜鸡的自我修养)
class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn.ReLU(), nn.MaxPool1d(8)) self.layer2 = nn.Sequential( nn.Conv1d(100,50,2), nn.BatchNorm1d(50), nn.ReLU(), nn.MaxPool1d(8)) self.fc = nn.Linear(300,6) def forward(self,x): #input.shape:(16,1,425) out = self.layer1(x) out = out.view(out.size(0),-1) out = self.fc(out) return out
输入的数据格式是(batch_size,word_vector,sequence_length),我设置的batch=16,特征工程样本是1x425,套用该格式就应该是(16,1,425)。对应nn.Conv1d的in_channels=1,out_channels就是你自己设置的,我选择的是100。
因为我做的是分类场景,所以做完两次一维卷积后还要加上一个线性层。
以上这篇pytorch中nn.Conv1d的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
相思资源网 Design By www.200059.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
相思资源网 Design By www.200059.com
暂无pytorch中nn.Conv1d的用法详解的评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。